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Abstract
This work deals with the inverse scattering problems for the one-dimensional
Schrödinger equation of the most general form

−u′′ + F(x, u) = k2u,

with general nonlinearity F and with a real parameter k. Under some
assumptions on F we prove that all singularities and jumps of F(x, u0), where
u0(x, k) = eikx , can be recovered by the reflection coefficient with arbitrary
large k.

PACS numbers: 02.30.Zz, 03.65.Nk, 02.30.Nw
Mathematics Subject Classification: 35P25, 35R30

1. Introduction

Consider the nonlinear Schrödinger equation

HF u(x) := −u′′(x) + F(x, u) = k2u(x), k ∈ R, k �= 0, (1.1)

where F satisfies the following conditions:

(i) F (x, u) = F(x, u),

(ii) F (x, u0 +v) = uδ
0h0(x)+

(
uα

0 h1(x) + h̃1(x)
)
v+u

β

0 h2(x)v+R|v|γ , (1.2)

where u0 = eikx , functions h0, h1, h̃1, h2 are real valued and belong to L1(R), δ, α, β, γ are
real parameters and δ �= −1, γ > 1. In particular, F(x, u0) = uδ

0h0(x). Real-valued function
R in (1.2) may depend on x, k and v. We assume then that R satisfies the condition

|R(x, k, v)| � h3(x) (1.3)

with h3 from L1(R) and the Lipschitz condition

|R(x, k, v1) − R(x, k, v2)| � h̃3(x)|v1 − v2| (1.4)
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with h̃3 from L1(R). For u ∈ L∞
loc(R), we understand equation (1.1) in the sense of Schwartz

distributions.
Equation (1.1) with concrete F appears quite naturally in applications. It includes the

linear case and the basic nonlinearities of cubic and cubic-quintic type. These equations can
be met in nonlinear optics in the context of Kerr-like nonlinear dielectric film, see [8, 9, 13,
14]. This is an interesting example of more general nonlinearity, which is called the ‘Morse
oscillator’,

−u′′(x) − μ
(
e−a|u| − e−2a|u|) = k2u(x).

Some modifications of the latter equation are used in theoretical chemistry to describe
the photo-dissociation of molecules. Especially the classical Morse oscillator driven by a
sinusoidal force has been invoked in studies of stochastic excitation. Here μ is dissociation
energy and a is a range parameter.

In scattering theory one considers the scattering solutions to equation (1.1), that is the
solutions of the form

u(x, k) = u0(x, k) + usc(x, k),

where u0(x, k) = eikx is the incident wave and usc(x, k) is the scattered wave. These solutions
are the unique solutions of the Lippmann–Schwinger equation

u(x, k) = eikx +
1

2i|k|
∫ ∞

−∞
ei|k||x−y|F(y, u) dy.

Setting u(x, k) = u(x,−k) for k < 0 and using (i) from (1.2) we can consider the following
integral equation:

u(x, k) = eikx +
1

2ik

∫ ∞

−∞
eik|x−y|F(y, u) dy (1.5)

for all k �= 0.
We need some properties of the solutions u(x, k) to equation (1.5). Let us introduce the

following sequence:

uj (x, k) = eikx +
1

2ik

∫ ∞

−∞
eik|x−y|F(y, uj−1) dy, (1.6)

where j = 1, 2, . . ..

Lemma 1.1. If

k � k0 := max
(
γ

1
γ−1 ‖h0‖1, ‖h1‖1 + ‖h̃1‖1 + ‖h2‖1 + ‖h3‖1 + ‖h̃3‖1

)
+ 1,

then there exists a unique solution u(x, k) ∈ L∞(R) to (1.5) of the form u = u0 + usc such
that, uniformly in x ∈ R and k � k0,

u(x, k) = lim
j→∞

uj (x, k).

Moreover, for each j = 0, 1, 2, . . . ,

‖u − uj‖∞ � cj

kj+1
. (1.7)

Proof. For each j = 0, 1, 2, . . . , equation (1.6) implies by induction that

‖uj+1‖∞ � 1 +
‖h0‖1

2k

j∑
l=0

(
A

2k

)l

2
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where A = ‖h1‖1 + ‖h̃1‖1 + ‖h2‖1 + ‖h3‖1. Hence, if we choose k > A then we obtain

‖uj+1‖∞ � 1 +
‖h0‖1

k
, j = 0, 1, 2, . . .

Using now the latter inequality and (1.2)–(1.4) we obtain

‖uj+1 − uj‖∞ � 1

2k

∫ ∞

−∞

(
|h1| + |h̃1| + |h2| +

(‖h0‖1

k

)γ

|h̃3|

+γ

(‖h0‖1

k

)γ−1

|h3|
)

dy‖uj − uj−1‖∞.

If we choose first k � γ
1

γ−1 ‖h0‖1 then we obtain

‖uj+1 − uj‖∞ � 1

2k

∫ ∞

−∞
(|h1| + |h̃1| + |h2| + |h̃3| + |h3|) dy‖uj − uj−1‖∞ (1.8)

and uniformly with respect to k � k0 (where k0 is as in the lemma)

‖uj+1 − uj‖∞ � 1
2‖uj − uj−1‖∞.

This inequality allows us to conclude that the sequence {uj }∞j=0 is a Cauchy sequence in the
space L∞(R). Thus, the first part of this lemma is proved. But inequality (1.7) follows
immediately from (1.8). Lemma 1.1 is completely proved now.

The results of lemma 1.1 imply that for fixed positive k � k0 the solution u(x, k) admits
for x → −∞ the asymptotic representation

u(x, k) = eikx + e−ikxb(k) + o(1),

where

b(k) = 1

2ik

∫ ∞

−∞
eikyF (y, u) dy, k � k0. (1.9)

Note that b(k) = b(−k). We consider b(k) as our scattering data and set b(k) = 0 for |k| < k0.
The inverse problem that is considered here is to extract information about h0(x) given the
scattering data, b(k) for all k � k0. We will investigate an approximate method to recover the
discontinuities of the function h0(x). This method is called the Born approximation.

Definition (1.9) of b(k) and property (1.7) of the solutions u(x, k) allow us to conclude
that for large k

b(k) ≈ 1

2ik

∫ ∞

−∞
eik(1+δ)yh0(y) dy =

√
2π

2ik
F (h0)(k(1 + δ)),

where h0 is the function which is defined in (1.2) and F designates the Fourier transform

(Ff )(k) = 1√
2π

∫ ∞

−∞
eikyf (y) dy.

The inverse Fourier transform is thus defined by

(F−1f )(x) = 1√
2π

∫ ∞

−∞
e−ikxf (k) dk.

The latter formulae justify the following definition.
�

3



J. Phys. A: Math. Theor. 42 (2009) 332002 Fast Track Communication

Definition 1. The inverse Born approximation qB(x) for the Schrödinger equation (1.1) is
defined by

qB(x) = F−1

(
2ikb

(
k

1+δ

)
√

2π(1 + δ)

)
(x). (1.10)

Note that this equality must be considered in the sense of tempered distributions.
There is the interest in the unique (or full) recovery of the unknown function(s), see

Gelfand–Levitan–Marchenko approach [1, 3–7, 10] in the linear case and the works of Strauss
[20], Weder [22–24], Tao [21] and Aktosun et al [2] in various nonlinear settings.

Some works are concerned with the partial recovery of the unknown functions. Several
authors (we restricted this list only to one-dimensional case) have proved that an approximate
method known as the inverse Born approximation is able to recover all jumps and singularities
of the unknown function in the linear settings from limited data, see, e.g., [11, 12, 15, 18, 19]
and the references therein. In one dimension, this approach requires less than half the data,
roughly speaking, compared to the attempt of full recovery. Our line of research is this very
approach. After providing the first application of the Born approximation in the nonlinear
case (see [16, 17]) for particular type of nonlinearity F, we extend it in this communication to
very general nonlinearities, namely, those of forms (1.2)–(1.4).

The main goal of this communication is to prove the following theorem.

Theorem 1. Assume that the functions h0, h1, h̃1, h2, h3, h̃3 from (1.2)–(1.4) are real valued
and belong to L1(R). Then the difference qB(x) − h0(x) is continuous on the line.

2. Proof of the main theorem

The convergence of the solution sequence {uj }∞j=0 from lemma 1.1 gives rise to the data
sequence

bj (k) = 1

2ik

∫ ∞

−∞
eikyF (y, uj ) dy, j = 0, 1, 2, . . . ,

such that b(k) = limj→∞ bj (k) uniformly and the Born sequence qB,j (x)

qB,j (x) = i

π(1 + δ)

∫ ∞

−∞
kbj

(
k

1 + δ

)
e−ikxdk, j = 0, 1, 2, . . . , (2.1)

of our main interest. Here the convergence,

qB(x) = lim
j→∞

qB,j (x),

can be regarded in the sense of distributions.

Lemma 2.1. Under the same assumptions as in theorem 1.1

qB,0(x) = h0(x) (mod C∞(R)).

Proof. It is the same as lemma 4 in [17].
�

Lemma 2.2. Under the same assumptions as in theorem 1.1 for each j = 0, 1, 2, . . . ,

|b(k) − bj (k)| � cj

kj+2
, k � k0. (2.2)

4
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Proof. Since u(x, k) = u0(x, k) + usc(x, k), uj (x, k) = u0(x, k) + u
(j)
sc (x, k) and

|b(k) − bj (k)| � 1

2k

∫ ∞

−∞
|F(y, u) − F(y, uj )| dy, k � k0,

we may conclude from (1.2)–(1.4) and from the proof of lemma 1.1 that

|b(k) − bj (k)| � 1

2k

(‖h1‖1 + ‖h̃1‖1 + ‖h2‖1 + ‖h3‖1 + ‖h̃3‖1
) ‖u − uj‖∞ � cj

kj+2
.

It proves this lemma.
�

It follows from lemma 2.2 that

b(k) = b1(k) + O

(
1

k3

)
, k � k0.

This is enough for us to conclude (see (1.10) and (2.1)) that

qB(x) − qB,1(x) ∈ Cβ(R) (2.3)

for any 0 < β < 1, where Cβ denotes Zygmund-Hölder space on the line.
The smoothness of the term qB,1 can only be estimated after we can write it in a more

explicit form.

Lemma 2.3. Under the same assumptions as in theorem 1.1

qB,1(x) = h0(x) + q1(x)
(
mod Hs(R) + mod C∞(R)

)
for any s < γ − 1

2 , where Hs(R) denotes Sobolev space, and the first nonlinear term q1 has a
precise form

q1(x) = 1 + δ

4

∫ ∞

−∞
h0(z) dz

∫ ∞

−∞

(
h1(y) sgn

(
1 + α

1 + δ
y +

δ

1 + δ
z +

|y − z|
1 + δ

− x

)

+h̃1(y) sgn

(
1

1 + δ
y +

δ

1 + δ
z +

|y − z|
1 + δ

− x

)

+h2(y) sgn

(
1 + β

1 + δ
y − δ

1 + δ
z − |y − z|

1 + δ
− x

))
dy. (2.4)

Proof. Due to representations (1.2) and (2.1), lemma 2.1 and the definition of u(1)
sc = u1 − u0

the term qB,1 can be rewritten as

qB,1(x) = h0(x) +
1

2π

∫ ∞

−∞
e−ikx

∫ ∞

−∞

(
ei k(1+α)y

1+δ h1(y) + ei ky

1+δ h̃1(y)
)

u(1)
sc dy dk

+
1

2π

∫ ∞

−∞
e−ikx

∫ ∞

−∞
ei k(1+β)y

1+δ h2(y)u
(1)
sc dy dk

+
1

2π

∫
|k|�k0

e−ikx

∫ ∞

−∞
ei ky

1+δ R
∣∣u(1)

sc

∣∣γ dy dk (mod C∞(R)), (2.5)

where u(1)
sc and R are taken with the variables

(
k

1+δ
, y

)
and

(
k

1+δ
, y, u(1)

sc

)
, respectively.

Since condition (1.3) is satisfied and
∣∣u(1)

sc

∣∣ � c
|k| we can conclude that the last integral

in (2.5) is a function of x ∈ R from Sobolev space Hs(R) for any s < γ − 1
2 . Further,

substituting the exact form of u(1)
sc (see (1.6)) in the first and the second integrals of (2.5), we

obtain (2.4) (see the proof of lemma 11 in [17] for details). Thus, the lemma is proved.
�
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Corollary 1. q1 is a bounded continuous function.

Now we are ready to prove the main theorem.

Proof of theorem 1. Since

qB(x) − h0(x) = (qB(x) − qB,1(x)) + (qB,1(x) − h0(x)),

then the theorem follows immediately from (2.3), lemma 2.3, its corollary 1 and the embedding
theorem for Sobolev spaces.

�

Remark 1. This theorem allows us to conclude that all jumps and singularities of the unknown
function h0 (which might be considered as the characterization of nonlinearity F) can be
obtained exactly by the Born approximation. In particular, for h0(x) being the characteristic
function of the unknown interval on the line this interval is uniquely determined by this
scattering data.
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